A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae

نویسندگان

  • Takayuki Fujiwara
  • Yu Kanesaki
  • Shunsuke Hirooka
  • Atsuko Era
  • Nobuko Sumiya
  • Hirofumi Yoshikawa
  • Kan Tanaka
  • Shin-Ya Miyagishima
چکیده

The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase), NIR (nitrite reductase), and NRT (the nitrate/nitrite transporter) are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR, or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 h by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytoplasmic localization of the single glutamine synthetase in a unicellular red alga, Cyanidioschyzon merolae 10D.

Glutamine synthetase (GS) is a key enzyme for nitrogen assimilation. Although GS contains multiple molecular species found in plastid, mitochondria and cytoplasm in green plants and algae, genome analysis of a red alga, Cyanidioschyzon merolae, revealed a single nuclear gene for GS (CmGS). In this study, we experimentally determined the CmGS localization in the cytoplasmic compartment.

متن کامل

Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D.

Although the nuclear genome sequence of Cyanidioschyzon merolae 10D, a unicellular red alga, was recently determined, DNA transformation technology that is important as a model plant system has never been available thus far. In this study, improved culture conditions resulted in a faster growth rate of C. merolae in liquid medium (doubling time = 9.2 h), and colony formation on gellan gum plate...

متن کامل

Molecular phylogeny and evolution of the plastid and nuclear encoded cbbX genes in the unicellular red alga Cyanidioschyzon merolae.

The cbbX gene is generally encoded in proteobacterial genomes and red-algal plastid genomes. In this study, we found two distinct cbbX genes of Cyanidioschyzon merolae, a unicellular red alga, one encoded in the plastid genome and the other encoded in the cell nucleus. The phylogenetic tree inferred from cbbX genes and strongly conserved gene organization (rbcLS-cbbX) suggests that the plastid-...

متن کامل

Development of a Double Nuclear Gene-Targeting Method by Two-Step Transformation Based on a Newly Established Chloramphenicol-Selection System in the Red Alga Cyanidioschyzon merolae

The unicellular red alga Cyanidioschyzon merolae possesses a simple cellular architecture that consists of one mitochondrion, one chloroplast, one peroxisome, one Golgi apparatus, and several lysosomes. The nuclear genome content is also simple, with very little genetic redundancy (16.5 Mbp, 4,775 genes). In addition, molecular genetic tools such as gene targeting and inducible gene expression ...

متن کامل

Development of a Heat-Shock Inducible Gene Expression System in the Red Alga Cyanidioschyzon merolae

The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been report...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015